
Correlated Topic Modelling via Householder Flow
Luyang Liu

∗

Department of Computer Science and

Technology, Beijing Institute of

technology

Beijing, China

lly_aegis@foxmail.com

Heyan Huang

Department of Computer Science and

Technology, Beijing Institute of

technology

Beijing, China

hhy63@bit.edu.cn

Yang Gao

Department of Computer Science and

Technology, Beijing Institute of

technology

Beijing, China

gyang@bit.edu.cn

ABSTRACT
Topic models can be one of the prevalent unsupervised learning

approaches in natural language processing. Recent works on neural

variational inference offer a powerful framework combining neu-

ral networks and interpretable probability models. However, one

fundamental assumption is that topics in the latent space are inde-

pendent to each other, which is actually not the case in the reality.

In this paper, we propose the Correlated Householder Topic Model

(CHTM) to capture the correlations among topics, and model them

via Householder flow. The experiments show that ,by incorporating

topic correlation, CHTM outperforms baseline methods on two

standard datasets.
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1 INTRODUCTION
Topic models, such as Latent Dirichlet Allocation (LDA) [4], have

proven to be successful unsupervised methods for mining topics

among document collections. In LDA, each document is assumed to

be a mixture of topics and the topic proportion of each document

is given from a Dirichlet distribution. The components of Dirichlet

distribution on topic proportions are nearly independent, thus lead-

ing to the strong and unrealistic limitation in topic modelling. To

reform this drawback, Correlated Topic Model (CTM) [3] replaces

the multinomial topic mixture distribution with a logistic normal

distribution to capture the correlation between topics. Likewise,
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some other correlated topic models, such as Gaussian Process Topic

Models[1], also model topic as an Gaussian distribution to capture

the correlation between topics. However, due to that non-conjugate

prior of topic, the inference of these models tend to be complicated

and tricky.

To address this issue, the neural variational topic models, such

as Neural Variational Document Model (NVDM) [10], are proposed.

Based on Neural Variational Inference (NVI) [7, 8, 11, 12], in neu-

ral variational topic model, neural networks is applied for model

inference. The generative model usually consists of interpretable

procedures for document generation. To reach the computation

efficiency, the topic distribution of neural variational topic model

is usually an isotropic Gaussian, which, yet, leads to the problem

that the topics are independent and the correlations of topics are

ignored.

To remedy this problem, the isotropic Gaussian needs to be

transformed into a full covariance one. In NVI, recent efforts to do

this usually refer to the flow-based methods such as Normalizing

flow [14] and Householder flow [17]. These flow-based methods

implement several functions to establish the correlation among

different dimensions of latent variables. Householder flow, as one

of the unitary flows, is an efficient approach among those flow based

methods. It only relies on several linear transformations which can

facilitate computation.

In this paper, to solve the aforementioned problem, we present

Correlated Householder Topic Model (CHTM) which can establish

the topic correlation modelling via Householder flow. To efficiently

estimating the parameters of CHTM, we apply Free-energy based

lower bound [14] to help the training. Notably, Our work is first

approach to introduce the topic correlation modelling in neural

variational topic models. In summary, the main contributions of

this paper include:

(1) Householder flow is introduced to model the topic correla-

tion in neural variational topic models.

(2) To efficiently estimate the objective function, we apply Free-

energy based lower bound in estimating the objective func-

tion of CHTM.

(3) Our proposed CHTM achieves better performance on two

standard datasets than those of baseline methods.

The paper organizes as follows: Section 2 gives brief introduction

of neural variational topic models. Section 3 describes our proposed

CHTM in detail. Section 4 describes the inference of proposed

CHTM. Section 5 introduces related works. Section 6 introduces

the experimental setting, evaluation metrics and baseline methods.

The conclusion is given in Section 7.
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2 NEURAL VARIATIONAL TOPIC MODELS
In this section, we give a brief introduction to neural variational

topic models. Recent works, such as NVDM, can be interpreted as

a Variational Auto Encoders: A encoder for mapping documents

to latent distributions and a decoder to generate documents from

given latent distributions. Thus, we first give a description of VAEs

framework in topic modelling. As a typical neural variational topic

model, NVDM then is discussed in detail.

2.1 Variational Auto Encoder in Topic
modelling

In terms of VAEs in topic modelling, the input is supposed to a bag-

of-words document vector x. For each document in collection D =

{x1, x2, · · · , xn}, VAEs tries to maximize the marginal likelihood

of observed data:

max logp(D) = max

n∑
i=1

logp(xi) (1)

The task, however, is intractable due to the fact that the generative

model is parameterized by a neural network. To avoid arduous

work of variational inference, the inference network is introduced

to inference the model parameters [5]:

logp(x) ≥ Eqϕ (h |x)[logpψ (x|h)] − KL(qϕ (h|x ∥ p(h)) (2)

where h, in neural variational topic models, is usually the latent

topic representation or other topic related factors. qϕ (h|x) is the
encoder network with parameter ϕ. pψ (x |h) is the decoder with
parameter ψ . p(h) is the prior distribution given by N(0, I). The
optimization of Eq.(2) can be efficiently done via reparameterization

[7, 15] of latent variable z.
During training of neural variational topic models, the inference

network focuses on mapping observed document vectors into latent

topic distributions. The generative model then tries to ensure the

encoded latent topics can generate the given document represen-

tations. In neural variational topic models, actually, the inference

network serves as an estimator in approximating topic posteriors

with observed samples.

2.2 Neural Variational Document Model
Neural Variational Document Model (NVDM) [10] is a simple but

powerful case of neural variational topic models. NVDM imple-

ments a multilayer perceptron (MLP) inference network to map

the bag-of-words document vectors into continuous latent distribu-

tions. The generative model then takes samples from latent topic

distribution as input of multinomial softmax network to regenerate

the document representations.

Specifically, the general structure of NVDM is:

(1) The inference network maps a document vector d into a

continuous latent normal distribution N(µ0,Σ0) via a MLP

neural network. The parameters of latent distribution are

parametrized by two linear layers:

d
MLP
−−−−→ h ∽ N(µ0,Σ0)

u = д(MLP(d))

µ0 = l1(u)

Σ0 = diaд(exp 2·l2(u))

(3)

where l1(·) and l2(·) are linear transformation layers. д(·) is
non-linearity operation.

(2) For the generative model, it first takes some samples from la-

tent normal distribution using the reparameterisationmethod[7,

15]. Multinomial softmax[10] then generates document vec-

tors with the given samples. The process of multinomial

softmax denotes in (4).

pψ (xi |h) =
exp{−F (wi; h,ψ )}∑ |V |

j=1 exp{−F (wi; h,ψ )}

F (wi; h,ψ ) = −hTRwi − bwi

(4)

where R is the topic-word matrix. h is a sample from latent

topic distribution N(µ0,Σ0). wi is corresponding one-hot

word index vector in vocabulary.

The goal of NVDM is to maximize the marginal log-likelihood

logp(x) of given data x. It is equivalent to maximize the Evidence

Lower Bound(ELBO)which is lower bound ofmarginal log-likelihood[5]:

max logp(x) ≥ max ELBO (5)

ELBO = Eqϕ (h |x)[logpψ (x|h)] − KL[qϕ (h|x) ∥ p(h)] (6)

where p(h) is a standard Gaussian priorN(0, I).KL[qϕ (h|x) ∥ p(h)]
can be analytically computed to reduce the lower variance of the

gradients.

In NVDM, each dimension of latent topic distribution is corre-

sponding to a topic. As it is mentioned in Eq.(3), the covariance

matrix of latent normal distribution is set to a diagonal one which

indicates that each topic is independent to others. In practice, the di-

agonal covariance matrix of latent topic distribution aims to achieve

computational efficiency. However, here it leads to the failure of

topic correlation modelling. On the other hand, in VAEs framework,

the model tries to approximate the true posterior distribution with

the latent distribution which makes the diagonal covariance matrix

only explainable when it coincides with the diagonal covariance

matrix of true posterior distribution. To reform this drawback, a

full covariance matrix is needed.

3 CORRELATED HOUSEHOLDER TOPIC
MODEL

In this section, we first review the Householder flow, an efficient

approach to transform isotropic Gaussian into a full covariance one.

The details of CHTM is then discussed.

3.1 Householder flow
Previous work [17] introduces a unitary transformation called

Household flow to capture the correlation between each dimen-

sion in latent distribution. In NVDM, the each dimension of latent

distribution also is corresponding to a topic, which is reasonable

to model the topic correlation with Householder flow. Therefore,
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Figure 1: Schematic representation of CHTM. The triangle indicates the procedure of Householder flow.
inspired by their work, we introduce Household flow to incorporate

the topic correlation in CHTM.

To get a full covariance matrix, a orthogonal matrix is needed to

transform the diagonal matrix into a full covariance one. Generally,

any full covariance matrix can be factorized into two orthogonal

matrices:

Σ = UDUT
(7)

where D is an eigenvalue matrix, U is an orthogonal matrix. In

addition, any orthogonal matrix can be represented in following

form[2, 16, 17]:

Theorem 3.1. For anyM ×M matrixU , there exists a full-rank
M × K matrix Y (basis) and a non-singular K × K matrix S , K ≤ M ,
such that:

U = I − YSYT
(8)

The degree of the orthogonal matrix is given by K . Additionally,
according to the [2, 16, 17], any orthogonal matrix with degree K
can be expressed with the product of Householder transformations:

Theorem 3.2. Any orthogonal matrix with basis acting on the
K-dimensional subspace can be expressed as a product of exactly K
Householder transformations:

U = HKHK−1 · · ·H1 (9)

where Hk = I − SkkY·k(Y·k)
T, for k = 1, · · ·K .

Theorem 3.2 indicates that we can model any orthogonal matrix

via a series of K Householder transformations. The initial House-

holder matrix H1 is given by Eq.(10) with input of the inference

network. For other t ≥ 2,Ht indicates the corresponding House-

holder matrix with input of h(t−1)
. h(0) is the random variable sam-

pled from original latent distribution. h(k) is the final transformed

random variable after a Householder flow at length of k .

h(t)= Ht(x)h(t−1)

= (I − 2
vt(x) · (vt(x))T

∥ vt(x) ∥2 ) · h(t−1)
(10)

Mathematically, Householder matrix is an unitary, Hermitian

and involutory matrix. With these properties, it can facilitate the

derivation of objective function when Householder flow is applied.

Moreover, the Householder flow only requires an invertible linear

transformation which will facilitate the computation in training.

3.2 Incorporating Correlated Topic Modelling
via Householder flow

To establish topic correlation modelling, Householder flow is ap-

plied to transform the original isotropic Gaussian topic distribution

into a full covariance one. Notably, our CHTM is the first approach

incorporating topic correlationmodelling in neural variational topic

models.

Specifically, in CHTM, the MLP inference network takes bag-of-

words vector d as the input. Then the initial topic distribution is

parameterized by two linear vector. The mean vector µ and variance
vector σ is given by Eq.(3). Householder flow is then applied to

transform isotropic distribution sample h(0) into a full covariance

Gaussian sample h(t ) by Eq.(10). Finally, the multinomial softmax

layer reconstruct document d′ according to the covariance Gaussian
sample h(t ) by Eq.(4). The structure of CHTM is display in Fig.1.

4 INFERENCE IN CHTM
In this section, we focus on detailed discussion of estimating objec-

tive function of the proposed CHTM.

Specifically, the objective function of CHTM is given by (11).

L = Eqϕ (h(t) |x)[logp(x|h
(t))] − KL

[
qϕ (h

(t) |x)∥p(h)
]

(11)

where p(h) is a standard normal distribution N(0, I). However, the
topic distribution refined by Householder flow involve a implic-

itly non diagonal matrix, which is unable to carry out mean-field

variational inference used in NVDM. Previously, [14, 17] offers an

efficient approach for estimating (11), namely Flow-based Free En-

ergy Bound. The Flow-based Free Energy Bound denotes in Eq.(12).

Finally, the parameters of generative model and inference network

can be updated by awake-sleep algorithm .

LF F EB = Eq [logp(d|h(k))+
k∑
t=1

log |det
∂ f (t )

∂h(t−1)
|]−KL[q(h(0) |d)∥p(h(k))]

(12)

From Eq.(12), Flow-based Free Energy Bound has a term in-

volving the inverse transformation of flow function. For proposed

CHTM, it can be simplified due to the unitary property of House-

holder matrix: |H| = 1 so that log |
∂f (t )

∂h(t−1) | = loд |H| = 0. This

property suggests that we actually don’t have to get explicit pa-

rameters of final topic distribution while the neural variational

inference can work properly. The objective function of CHTM can

then be written as Eq.(13).
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LF F EB = Eq [logp(d|h(k))] + 0.5[n − µ2 + |Σ| + log |Σ|] (13)

5 RELATEDWORKS
CTM [3] is a typical topic model incorporating topic correlation

modelling. The topic mixture distribution in CTM is a logistic nor-

mal distribution with full covariance matrix. The following works

such as Gaussian Process Topic Models [1] also relies on log nor-

mal distribution with full covariance matrix to model the topic

correlations.

In neural variational topic models, NVDM [10] is a typical VAEs-

based topic model. It implements a multilayer perceptron inference

network for inference and a multinomial softmax generative model.

The multinomial softmax can be regarded as the multinomial dis-

tribution under the restriction of softmax simplex[10]. Similarly,

Gaussian Softmax Model [9] normalized the topic vector and gen-

erative process of NVDM. It replaces the multinomial softmax gen-

erative with a normalized layer to enhance the interpretability of

NVDM. The structure of inference network remains unchanged. To

reach computation efficiency, the topic distributions of NVDM and

GSM are isotropic Gaussian distributions.

To transform isotropic Gaussian distributions into a full covari-

ance one, normalizing flow[14] is the typical way of solution. Nor-

malizing flow implements several invertible functions to map the

original distribution variable into a full covariance one. What’s

more, Flow-based Free Energy Bound[14] is proposed to simplify

the deviation of evidence lower bound. Householder flow is an-

other solution. Householder flow involves a series Householder

transformation and matrix multiplication, which can be efficiently

computed.

6 EXPERIMENTS
6.1 Dataset and Setup
To evaluate our efforts, we choose 20NewsGroups1 and Reuters RCV1-
v22 for experiments. 20NewsGroups is a collection of newsgroup

documents which consists of 11,314 training and 7,531 test arti-

cles. Reuters RCV1-v2 is a large dataset which consists of Reuters

newswire stories with 794,414 training and 10,000 test cases. For

data preprocessing, we follow the samilar procedure and setup

in [10]. The vocabulary sizes of experiments conducted on these

dataset are 2,000 and 10,000.

To make direct comparison with the prior works, we choose

following methods as baselines:

(1) Latent Dirichlet Allocation: The widely used topic model in

community. Here, we utilize the online variational inference

implement of LDA in Gensim Gensim[13].

(2) Correlated Topic Model: CTM replaces the component inde-

pendent Dirichlet distribution with a log normal Gaussian

distribution to capture the correlation between topics. The

author implemented version of CTM
3
is choosed.

1
http://qwone.com/ jason/20Newsgroups

2
http://trec.nist.gov/data/reuters/reuters.html

3
https://github.com/blei-lab/ctm-c

Table 1: Perplexity on corresponding dataset. The number
of topic is 50.

Model 20News RCV1-v2

LDA 1066.0309 1134.0293

CTM 944.1920 1074.4023

NVDM 832.4007 635.2824

GSM 849.0213 717.8721

CHTM 780.7094 541.4351

(3) Neural Variational Document Model: An typical neural vari-

ational topic model. It implements a MLP network as infer-

ence network and a multinomial softmax generative model

to model the document construction process.

(4) Gaussian Softmax Model: GSM normalized the topic vector

of NVDM and implement a normalized multinomial softmax

generative model to represent the topic word distribution.

(5) CHTM: The proposed method.

For LDA and CTM, the grid search is applied to find the optimal

hyper parameters. For NVDM
4
, GSM and CHTM, the inference net-

work consists of a MLP with 2 layers and 500 hidden units. To fairly

compare with NVDM, CHTM uses the same inference network op-

tions as NVDM. Accordingly, all baseline methods and CHTM are

trained with 50 topics. For CHTM, the length of Householder flow

is 1. During the training of NVDM, GSM and CHTM, we take one

sample from latent distributions to compute the document vector

and estimate the lower bound of document perplexity. Adam [6]

and hold-out validation are applied during training. Like what is

usually done in training VAEs, we alternately optimize the gen-

erative model and inference network by fixing parameters of one

while updating the parameters of another.

6.2 Result
Many evaluation metrics have been applied to measure the quality

of topic modelling. The typical metric in evaluating topic modelling

is perplexity. Perplexity, in language modelling, always refers to

the inverse of geometric mean per-word likelihood. The lower

perplexity on test data usually indicates the better generalization

performance. The perplexity in topic modelling is given by Eq.(14).

exp

[
−
1

D

Nd∑
n

1

Nd
logp(Xd )

]
(14)

For CTM, the per word perplexity low bound mentioned in [3]

is selected for evaluation. For neural variational methods, due to

the fact that logp(Xd ) is intractable, we follow [11] using the vari-

ational evidence low bound (which is the upper bound of the per-

plexity) for evaluation.

The result is demonstrated at Table 1. Generally, the neural

variational topic models have better performance than those of

traditional models. Specifically, the proposed CHTM outperform

other baseline methods on the both datasets. GSM and NVDM

have similar performance on 20News. On RCV1-v2, the NVDM get

better performance than that of GSM. On 20News dataset, CHTM

4
https://github.com/ysmiao/nvdm
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achieves approximate 7% lower perplexity than NVDM. On RCV1-

v2, the proposed CHTM also gets lower perplexity than that of

NVDM. The generative models of NVDM and CHTM are same

multinomial softmax. It indicates that the correlated topic modelling

by incorporating Householder flow can improve the performance

of neural variational topic models.

7 CONCLUSION
In this paper, we present CHTM: a neural variational topic model

which can model topic correlation. Notably, CHTM is first approach

to introduce topic correlation modelling in neural variation topic

models. In CHTM, the topic correlations is established by House-

holder flow. The refined topic distributions can contribute the topic

modelling by significantly reducing the perplexity of collections.

The result of experiments shows that, compared with NVDM and

GSM, CHTM can remarkably improve the performance of topic

modelling. Moreover, in CHTM, the topic correlation modelling

with Householder flow only involves fewmodifications in inference

network, which indicates that the models whose latent distributions

are isotropic Gaussian are suitable for Householder flow.
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